一、非线性离散数据平滑处理方法?
平滑,也可叫滤波,或者合在一起叫平滑滤波,平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。
“平滑处理”也称“模糊处理”(blurring),是一项简单且使用频率很高的图像处理方法。平滑处理的用途很多,但最常见的是用来减少图像上的噪声或者失真。降低图像分辨率时,平滑处理是很重要。
均值滤波是典型的线性滤波算法,它是指在图像上对目标像素给一个模板,该模板包括了其周围的临近像素(以目标象素为中心的周围8个像素,构成一个滤波模板,即去掉目标像素本身),再用模板中的全体像素的平均值来代替原来像素值。
二、什么是离散方程?
离散数学是离散项方程。
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。
三、非线性方程公式?
点的(xi,yi) (i=1,2,3,4,5) 坐标大致成线形关系。可利用最小二乘法求出斜率、截距 以及非线性度。
首先约定 用小写的x和y表示各点坐标。而大写字母表示平均值。例如 (X)表示横坐标的平均值、(Y^2) 表示纵坐标平方的平均值、(Y)^2表示纵坐标平均值的平方、(XY)表示横纵坐标乘积的平均值 等等。
设 (xi,yi)之间的程线形关系。直线方程为 y=kx+b。k为斜率,b为截距。
按照最小二乘法:
k=[(X)(Y)-(XY)]/[(X)^2-(X^2)]
其中
(X)= (1/n)(∑xi)=(1/5)×(1+2+3+5+6)=3.4
(Y)= (1/n)(∑yi)=(1/5)×(2.20+4.00+5.98+10.10+12.05)= 6.866
(XY)=(1/n)(∑xiyi)
=(1/5)×(1×2.20+2×4.00+3×5.98+5×10.10+6×12.05)=30.188
(X^2)=(1/n)(∑xi^2)=(1/5)×(1×1+2×2+3×3+5×5+6×6)=15
(X)^2=3.4×3.4=11.56
k=(3.4×6.866-30.188)/(11.56-15)=1.99
以上关于直线的斜率,楼主没有要求计算。如果不需要算,可以忽略不看。另外,请楼主自己决定是否需要遵循有效数字的位数运算规则。
四、什么是离散项方程?
离散数学是离散项方程。
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。离散的含义是指不同的连接在一起的元素,主要是研究基于离散量的结构和相互间的关系,其对象一般是有限个或可数个元素。
五、非线性微分方程是?
对于一阶微分方程,形如:
y'
p(x)y
q(x)=0
的称为"线性"
例如:
y'=sin(x)y是线性的
但y'=y^2不是线性的
六、什么是非线性方程?
非线性方程,就是因变量与自变量之间的关系不是线性的关系。
这类方程很多,例如平方关系、对数关系、指数关系、三角函数关系等等。求解此类方程往往很难得到精确解,经常需要求近似解问题。相应的求近似解的方法也逐渐得到大家的重视。
七、非线性发展方程是什么?
非线性方程,就是因变量与自变量之间的关系不是线性的关系,这类方程很多,例如平方关系、对数关系、指数关系、三角函数关系等等。求解此类方程往往很难得到精确解,经常需要求近似解问题。相应的求近似解的方法也逐渐得到大家的重视。
八、非线性电路的特点是什么呢?非线性电路的特点?
非线性电路有以下特点
1 稳态不唯一
用刀开关断开直流电路时,由于电弧的非线性使这时的电路出现由不同起始条件决定的两个稳态——一个有电弧,因而电路中有电流;另一个电弧熄灭,因而电路中无电流。
线性电路通常只有一个稳态。但有些非线性电路的稳态可以不止一个。例如,用刀开关断开某个直流电路,当开关的刀和固定触头之间的距离不够大(例如距离为d)时,刀与触头之间可以出现稳定的电弧,电路中有电流,这是电路的一个稳态;增加上述距离使电弧熄灭后,再使此距离减少到d,却见不到电弧,电路中没有电流,这是另一个稳态。电弧的非线性特性使这个电路有两个稳态。电路处于何种稳态由起始条件决定。
2 自激振荡
在有些非线性电路里,独立电源虽然是直流电源,电路的稳态电压(或电流)却可以有周期变化的分量,电路里出现了自激振荡。音频信号发生器的自激振荡电路中因有放大器这一非线性元件,可产生其波形接近正弦的周期振荡。在含有直流独立电源的线性电路中,稳态下的电压、电流是不随时间变化的直流电压、直流电流。但在有些非线性电路里,独立电源虽然是直流电源,电路的稳态电压(或电流)却可以有周期变化的分量,电路里出现了自激振荡。例如,音频信号发生器的自激振荡电路中因有放大器这一非线性元件而成为非线性电路。这个电路可以产生其波形接近正弦的周期振荡。自激振荡可以分为两种。软激励:电路接通后就能激起振荡。硬激励:电路接通后,一般不能激起振荡,电路处于直流稳态。必须另外加一个幅度较大、作用时间很短的激励,电路里才会激起振荡。在这样的电路中便有两个稳态:一个是直流稳态,一个是含周期振荡的稳态。
3 谐波
正弦激励作用于非线性电路且电路有周期响应时,响应的波形一般为非正弦的,含有高次谐波分量或次谐波分量。例如,整流电路中的电流常会有高次谐波分量。也可以有频率低于激励频率的次谐波分量。整流电路中的电流常会有高次谐波分量。将铁心线圈和合适的电容器串联接到正弦电压源上,构成铁磁谐振电路,其中的电流可含有频率是电源频率1/3的次谐波分量,称1/3次谐波。
4 跳跃现象
非线性电路中,参数(电阻、电感、振幅、频率等)改变到分岔值时响应会突变,出现跳跃现象。铁磁谐振电路中就会发生电流跳跃现象。电路的响应与电路的各种参数有关。电阻、电感、正弦电源的振幅和频率都是参数。当某个参数有微小变化时,响应一般也有微小变化。但在非线性电路里,当参数改变到分岔值时,响应会突变,出现跳跃现象。考虑一个有合适电容值的铁磁谐振电路,以正弦电压源的有效值U 作为控制参数。平滑地、缓慢地改变U 时,电流有效值I一般随之平滑地变化,图中两条实线表示这种变化,箭头代表变化方向。当电压U由0增加时,电流按曲线①变化。当U 达到分岔值U2时,电流会突然增加,以后电流沿曲线②变化。当U由大于U2的值减少到分岔值U1时,电流会突然减少。电流跳跃性变化用图中虚线表示。平滑地改变电源的频率,也可以看到类似的现象。
5 频率捕捉
正弦激励作用于自激振荡电路时,若激励频率与自激振荡频率二者相差很小,响应会与激励同步。正弦激励作用于自激振荡电路时,看来有两种频率的振荡在电路里起作用,一个是激励的频率,一个是自激振荡频率。但当二者相差很小时,电路里只存在频率为激励频率的振荡:响应与激励同步。这种现象称为频率捕捉。
6 混沌
20世纪20年代 ,荷兰人B.范德坡尔描述电子管振荡电路的方程,成为研究混沌现象的先声。非线性电路可以出现的一种稳态响应波形,看似无规律可循,类似随机输出。它的频谱中有连续频谱成分。响应对起始条件极为敏感。在两组相差极微小的起始条件下,经过较长的时间以后两个响应的波形差别很大。这种稳态响应是一种混沌现象。在三阶(或三阶以上)自治电路和二阶(或二阶以上)非自治电路里可以出现混沌。低阶电路的混沌常作为理论研究对象。
九、什么是线性电路和非线性电路?
线性电路和非线性电路是电路中常用的概念,线性电路的特点是输出信号与输入信号之间呈现出一定的比例关系,换言之,输出信号随着输入信号的变化而成比例地变化;而非线性电路则不遵循此种比例关系,而是存在着一定的非线性关系。线性电路中的典型代表是电阻、电容、电感等元器件,而非线性电路中的典型代表是二极管、三极管等半导体器件。在实际应用中,线性电路主要用于放大、滤波、调节等方面,而非线性电路则主要涉及到高频电路、数字电路、射频电路等方面。总体而言,对于电路工程师而言,了解和掌握线性电路和非线性电路的特点和应用是非常重要的。
十、集成电路非线性应用特点?
、集成运放工作在线性区的特点:
(1)虚短:当集成运放工作在线性区时,同相端和反相端的电压几乎相等,所以称为虚假短路,简称虚短。
(2)虚断:当集成运放工作在线性区时,流入同相端和反相端的电流几乎为零,所以称为虚假断路,简称虚断。
2、集成运放工作在非线性区的特点:
当同相端电压大于反相端电压,即U+大于U-时,Uo等于+Uom;当同相端电压小于反相端电压,即U+小于U-时,Uo等于-扩展资料:
(1)集成运放工作在线性工作状态的最基本应用电路可以分为反相比例运算电路,同相比例运算电路。
(2)集成运算放大器
集成运算放大器简称集成运放,它的内部是直接耦合的多级放大器,整个电路可分为输入级、中间级、输出级三部分。
输入级采用差分放大电路以消除零点漂移和抑制干扰;中间级一般采用共发射极电路,以获得足够高的电压增益;
输出级一般采用互补对称功放电路,以输出足够大的电压和电流,其输出电阻小,负载能力强。Uom。